THE PROPERTY OF THE PROPERTY O

Tab. XIII.1 - Serie elettrochimica dei potenziali.

Reazione	Potenziale (a 25°C)	Reazione	Potenziale (a 25°C)
K=K ⁺ + e ⁻	-2,922	Ni=Ni ⁺⁺ + 2e ⁻	-0,250
Ca=Ca ⁺⁺ + 2e ⁻	-2,87	Sn=Sn++ + 2e-	-0,136
Na=Na+ + e-	-2,712	Pb=Pb ⁺⁺ + 2e ⁻	-0,126
$Mg = Mg^{++} + 2e^{-}$	-2,34	H2=2H ⁺ + 2e ⁻	0,000
Be=Be ⁺⁺ + 2e ⁻	-1,70	$Cu = Cu^{++} + 2e^{-}$	0,345
Al=Al ⁺⁺⁺ + 3e ⁻	-1,67	Cu=Cu ⁺ + e ⁻	0.522
Mn=Mn ⁺⁺ + 2e ⁻	-1,05	$2Hg=Hg2^{++} + 2e^2$	0,799
$Zn=Zn^{++}+2e^{-}$	0,762	$Ag = Ag^+ + e^-$	0,800
Cr=Cr ⁺⁺⁺ + 3e ⁻	-0,71	Pd=Pd++ - 2e-	0,83
Ga=Ga ⁺⁺⁺ + 3e ⁻	-0,52	Hg=Hg ⁺⁺ + 2e ⁻	0,854
Fe=Fe ⁺⁺ + 2e ⁻	-0,440	$Pt = Pt^{++} + 2e^{-}$	ca 1,2
Cd=Cd++ + 2e-	-0,402	Au=Au ⁺⁺⁺ + 3e ⁻	1,42
In=In ⁺⁺⁺ + 3e ⁻	-0.340	$Au = Au^+ + e^-$	1,68
T1=T1+ + e-	-0,336	,	
Co=Co++ + Ze-	-0,277		

La tabella XIII.1 esprime la scala elettrochimica dei potenziali, nella quale è stato assunto eguale a zero il potenziale dell'idrogeno, consentendo di calcolare la forza elettromotrice della pila che si forma accoppiando due metalli diversi.

Ad esempio, se si forma una pila tra lo zinco (potenziale -0.76V) ed il rame (+0.34 V) in condizioni standard si ha una forza elettromotrice fem:

$$fem = +0.34 - (-0.76) = 1.1 \text{ V}.$$

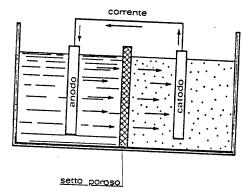
In genere si può assumere che un metallo, immerso in una soluzione che contenga i propri ioni con concentrazione C, assume un potenziale E dato da:

in cui:
$$E = E_0 + \frac{RT}{nF} \log_n C$$

$$E = E_0 + \frac{RT}{nF} \log_n C$$

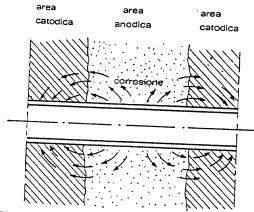
 R è la costante dei gas perfetti;
 T è il valore della temperatura ambiente in K è il numero di elettroni che compaiono nella reazione elettrochimica (per esempio, per Fe⁺⁺ è 2)

F è una costante (costante di Faraday)

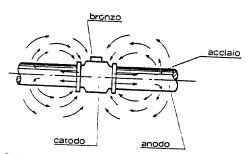

E_o è il potenziale standard, cioè rispetto a soluzioni a concentrazione ionica unitaria di ioni del metallo che si considera.

In un sistema elettrochimico può nascere una forza elettromotrice — e quindi occasione di corrosione — se esiste una qualsiasi etereogeneità nel sistema stesso; per esempio se sono a contatto due metalli diversi, o in parti dello stesso metallo si manifestano diverse concentrazioni o diverse temperature.

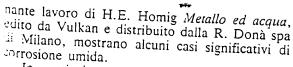
In figura XIII.3 si mostra un caso singolare di etereogeneità. La pila è costituita da due elettrodi dello stesso materiale, ma ciascuno immerso in soluzione a diversa concentrazione comunicanti attraverso un setto poroso che impedisce il mescolamento.

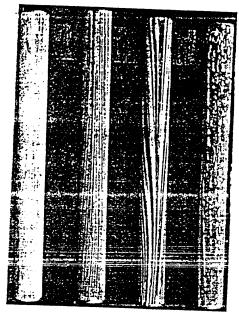

Nella figura XIII.4 l'etereogeneità, per un tubo interrato, è determinata da diversa natura del terreno, e nella figura XIII.5 è la presenza di una valvola di rame in una condotta d'acciaio a determinare discontinuità.

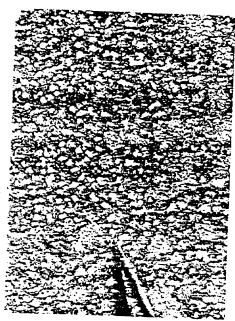
Le figure XIII.6 e XIII.7, tratte dall'illumi-



XIII-3. Caso particolare di eterogeneità.


<u>10 N E</u>


XIII-4. Eterogeneità nel caso di tubo interrato.


XIII-5. Esempio di eterogeneità per materiali diversi.

In particolare, la foto XIII.6 mostra, con debole ingrandimento, quattro bacchette di acciaio comune al carbonio, che sono state im-

XIII-6. Corrosione da ossigeno in acqua corrente.

XIII-7. Corrosione atmosferica.

messe per 24 ore, a temperatura ambiente, in senso longitudinale in acqua corrente con velocità di 0.2 m/s. L'acqua era satura di ossigeno. conteneva sale da cucina e, nei quattro casi, diverse quantità di ammoniaca, in modo di stabilizzare l'acidità sui valori di pH rispettivamente: 7,7, 9,4, 9,8 e 10,2. All'aumentare del-